Category Archives: Uncategorized

Some Thoughts on How Mills’ Managed The Report


I hope you enjoyed the Mark Mills’ report “New Energy Economy: An Exercise in Magical Thinking” that I have serialized on my blog.   If you have not seen it you can click here to begin the 10 parts. He does an excellent job of demonstrating why the Paris Agreement is unworkable, and of course, the even less believable New Green Deal.  And he did it without once entering into the argument whether CO2 is a serious threat to the globe or not.  

Mills barely mentioned nuclear generation in the report except for several small insertions.  It is possible that fossil fuels powered electrical production might be employed to handle the swings in demand in the future with nuclear the backbone of power generation.  Currently the catastrophic greens reject any use of nukes. So he did not need nukes to make his argument.   

cbdakota

New Energy Economy: An Exercise in Magical Thinking Part 6 Batteries Cannot Save the Grid or the Planet


This is part 6 of the serialization of Mark Mills’ report, New Energy Economy: An Exercise in Magical Thinking.

A discussion  of batteries being proposed as backups for renewables is an important topic.  So, I have chosen to bring together that which Mills has written about them in one posting, making it somewhat long.  Consider the recent threat by the Chinese that they would withhold, from the US,  the mined products that are necessary to make these batteries. 

===================================================

 Batteries Cannot Save the Grid or the Planet    

Batteries are a central feature of new energy economy aspirations. It would indeed revolutionize the world to find a technology that could store electricity as effectively and cheaply as, say, oil in a barrel, or natural gas in an underground cavern.47 Such

Jump-starting Frankenstein’s monster

electricity storage hardware would render it unnecessary even to build domestic power plants. One could imagine an OKEC (Organization of Kilowatt-Hour Exporting Countries) that shipped barrels of electrons around the world from nations where the cost to fill those “barrels” was lowest; solar arrays in the Sahara, coal mines in Mongolia (out of reach of Western regulators), or the great rivers of Brazil.

 But in the universe that we live in, the cost to store energy in grid-scale batteries is, as earlier noted, about 200-fold more than the cost to store natural gas to generate electricity when it’s needed.48 That’s why we store, at any given time, months’ worth of national energy supply in the form of natural gas or oil.

 Battery storage is quite another matter. Consider Tesla, the world’s best-known battery maker: $200,000 worth of Tesla batteries, which collectively weigh over 20,000 pounds, are needed to store the energy equivalent of one barrel of oil.49 A barrel of oil, meanwhile, weighs 300 pounds and can be stored in a $20 tank. Those are the realities of today’s lithium batteries. Even a 200% improvement in underlying battery economics and technology won’t close such a gap.

Nonetheless, policymakers in America and Europe enthusiastically embrace programs and subsidies to vastly expand the production and use of batteries at grid scale.50 Astonishing quantities of batteries will be needed to keep country-level grids energized—and the level of mining required for the underlying raw materials would be epic. For the U.S., at least, given where the materials are mined and where batteries are made, imports would increase radically. Perspective on each of these realities follows.

 How many batteries would it take to light the nation? A grid based entirely on wind and solar necessitates going beyond preparation for the normal daily variability of wind and sun; it also means preparation for the frequency and duration of periods when there would be not only far less wind and sunlight combined but also for periods when there would be none of either. While uncommon, such a combined event—daytime continental cloud cover with no significant wind anywhere, or nighttime with no wind—has occurred more than a dozen times over the past century—effectively, once every decade. On these occasions, a combined wind/solar grid would not be able to produce a tiny fraction of the nation’s electricity needs. There have also been frequent one hour periods when 90% of the national electric supply would have disappeared.51

 So how many batteries would be needed to store, say, not two months’ but two days’ worth of the nation’s electricity? The $5 billion Tesla “Gigafactory” in Nevada is currently the world’s biggest battery manufacturing facility.52 Its total annual production could store three minutes’ worth of annual U.S. electricity demand. Thus, in order to fabricate a quantity of batteries to store two days’ worth of U.S. electricity demand would require 1,000 years of Gigafactory production.

Wind/solar advocates propose to minimize battery usage with enormously long transmission lines on the observation that it is always windy or sunny somewhere. While theoretically feasible (though not always true, even at country-level geographies), the length of transmission needed to reach somewhere “always” sunny/windy also entails substantial reliability and security challenges. (And long-distance transport of energy by wire is twice as expensive as by pipeline.)53

Building massive quantities of batteries would have epic implications for mining.  A key rationale for the pursuit of a new energy economy is to reduce environmental externalities from the use of hydrocarbons. While the focus these days is mainly on the putative long-term effects of carbon dioxide, all forms of energy production entail various unregulated externalities inherent in extracting, moving, and processing minerals and materials.

Radically increasing battery production will dramatically affect mining, as well as the energy used to access, process, and move minerals and the energy needed for the battery fabrication process itself. About 60 pounds of batteries are needed to store the energy equivalent to that in one pound of hydrocarbons. Meanwhile, 50–100 pounds of various materials are mined, moved, and processed for one pound of battery produced.54 Such underlying realities translate into enormous quantities of minerals—such as lithium, copper, nickel, graphite, rare earths, and cobalt—that would need to be extracted from the earth to fabricate batteries for grids and cars.55 A battery-centric future means a world mining gigatons more materials.56 And this says nothing about the gigatons of materials needed to fabricate wind turbines and solar arrays, too.57

Even without a new energy economy, the mining required to make batteries will soon dominate the production of many minerals. Lithium battery production today already accounts for about 40% and 25%, respectively, of all lithium and cobalt mining.58 In an all-battery future, global mining would have to expand by more than 200% for copper, by at least 500% for minerals like lithium, graphite, and rare earths, and far more than that for cobalt.59

Then there are the hydrocarbons and electricity needed to undertake all the mining activities and to fabricate the batteries themselves. In rough terms, it requires the energy equivalent of about 100 barrels of oil to fabricate a quantity of batteries that can store a single barrel of oil-equivalent energy.60

Given the regulatory hostility to mining on the U.S. continent, a battery-centric energy future virtually guarantees more mining elsewhere and rising import dependencies for America. Most of the relevant mines in the world are in Chile, Argentina, Australia, Russia, the Congo, and China. Notably, the Democratic Republic of Congo produces 70% of global cobalt, and China refines 40% of that output for the world.61

China already dominates global battery manufacturing and is on track to supply nearly two-thirds of all production by 2020.62 The relevance for the new energy economy vision: 70% of China’s grid is fueled by coal today and will still be at 50% in 2040.63 This means that, over the life span of the batteries, there would be more carbon-dioxide emissions associated with manufacturing them than would be offset by using those batteries to, say, replace internal combustion engines.64

Transforming personal transportation from hydrocarbon-burning to battery-propelled vehicles is another central pillar of the new energy economy. Electric vehicles (EVs) are expected not only to replace petroleum on the roads but to serve as backup storage for the electric grid as well.65

Lithium batteries have finally enabled EVs to become reasonably practical. Tesla, which now sells more cars in the top price category in America than does Mercedes-Benz, has inspired a rush of the world’s manufacturers to produce appealing battery-powered vehicles.66 This has emboldened bureaucratic aspirations for outright bans on the sale of internal combustion engines, notably in Germany, France, Britain, and, unsurprisingly, California.

Such a ban is not easy to imagine. Optimists forecast that the number of EVs in the world will rise from today’s nearly 4 million to 400 million in two decades.67 A world with 400 million EVs by 2040 would decrease global oil demand by barely 6%. This sounds counterintuitive, but the numbers are straightforward. There are about 1 billion automobiles today, and they use about 30% of the world’s oil.68 (Heavy trucks, aviation, petrochemicals, heat, etc. use the rest.) By 2040, there would be an estimated 2 billion cars in the world. Four hundred million EVs would amount to 20% of all the cars on the road—which would thus replace about 6% of petroleum demand.

In any event, batteries don’t represent a revolution in personal mobility equivalent to, say, going from the horse-and-buggy to the car—an analogy that has been invoked.69 Driving an EV is more analogous to changing what horses are fed and importing the new fodder.

====================================================================

I like the last paragraph as it puts batteries in perspective.

Part 7 will be “Moore’s Law Misapplied”

cbdakota

New Energy Economy: An Exercise in Magical Thinking—Part 5 The Hidden Costs of a “Green” Grid


Continuing the serialization of Mark Mills’ report titled New Energy Economy: An Exercise In Magic Thinking:

=====================================================

The Hidden Costs of a “Green” Grid      

Subsidies, tax preferences, and mandates can hide realworld costs, but when enough of them accumulate, the effect should be visible in overall system costs. And it is. In Europe, the data show that the higher the share of wind/solar, the higher the average cost of grid electricity (Figure 3).

 Germany and Britain, well down the “new energy” path, have seen average electricity rates rise 60%–110% over the past two decades.37 The same pattern—more wind/ solar and higher electricity bills—is visible in Australia and Canada.38

Since the share of wind power, on a per-capita basis, in the U.S. is still at only a small fraction of that in most of Europe, the cost impacts on American ratepayers are less dramatic and less visible. Nonetheless, average U.S. residential electric costs have risen some 20% over the past 15 years.39 That should not have been the case. Average electric rates should have gone down, not up.

 Here’s why: coal and natural gas together supplied about 70% of electricity over that 15-year period.40 The price of fuel accounts for about 60%–70% of the cost to produce electricity when using hydrocarbons.41 Thus, about half the average cost of America’s electricity depends on coal and gas prices. The price of both those fuels has gone down by over 50% over that 15-year period. Utility costs, specifically, to purchase gas and coal are down some 25% over the past decade alone. In other words, cost savings from the shale-gas revolution have significantly insulated consumers, so far, from even higher rate increases.

The increased use of wind/solar imposes a variety of hidden, physics-based costs that are rarely acknowledged in utility or government accounting. For example, when large quantities of power are rapidly, repeatedly, and unpredictably cycled up and down, the challenge and costs associated with “balancing” a grid (i.e., keeping it from failing) are greatly increased. OECD analysts estimate that at least some of those “invisible” costs imposed on the grid add 20%–50% to the cost of grid kilowatt-hours.42

 Furthermore, flipping the role of the grid’s existing power plants from primary to backup for wind/ solar leads to other real but unallocated costs that emerge from physical realities. Increased cycling of conventional power plants increases wear-and-tear and maintenance costs. It also reduces the utilization of those expensive assets, which means that capital costs are spread out over fewer kWh produced— thereby arithmetically increasing the cost of each of those kilowatt-hours.43

 Then, if the share of episodic power becomes significant, the potential rises for complete system blackouts. That has happened twice after the wind died down unexpectedly (with some customers out for days in some areas) in the state of South Australia, which derives over 40% of its electricity from wind.44

After a total system outage in South Australia in 2018, Tesla, with much media fanfare, installed the world’s single largest lithium battery “farm” on that grid.45 For context, to keep South Australia lit for one half-day of no wind would require 80 such “world’s biggest” Tesla battery farms, and that’s on a grid that serves just 2.5 million people.

Engineers have other ways to achieve reliability; using old-fashioned giant diesel-engine generators as backup (engines essentially the same as those that propel cruise ships or that are used to back up data centers). Without fanfare, because of rising use of wind, U.S. utilities have been installing grid-scale engines at a furious pace. The grid now has over $4 billion in utility-scale, enginedriven generators (enough for about 100 cruise ships), with lots more to come. Most burn natural gas, though a lot of them are oil-fired. Three times as many such big reciprocating engines have been added to America’s grid over the past two decades as over the half-century prior to that.46

All these costs are real and are not allocated to wind or solar generators. But electricity consumers pay them. A way to understand what’s going on: managing grids with hidden costs imposed on nonfavored players would be like levying fees on car drivers for the highway wear-and-tear caused by heavy trucks while simultaneously subsidizing the cost of fueling those trucks.

The issue with wind and solar power comes down to a simple point: their usefulness is impractical on a national scale as a major or primary fuel source for generating electricity. As with any technology, pushing the boundaries of practical utilization is possible but usually not sensible or cost-effective. Helicopters offer an instructive analogy.

The development of a practical helicopter in the 1950s (four decades after its invention) inspired widespread hyperbole about that technology revolutionizing personal transportation. Today, the manufacture and use of helicopters is a multibillion-dollar niche industry providing useful and often-vital services. But one would no more use helicopters for regular Atlantic travel— though doable with elaborate logistics—than employ a nuclear reactor to power a train or photovoltaic systems to power a country.

===================================================

Only recently did I become aware that  recips are often used as the backup to renewable energy.   Click here to read a little about the recips .

Part 6 will be titled Batteries Cannot Save the Grid or the Planet.

cbdakota

Europe Has Been Better Than The US At Predicting Weather For At Least 6 Years.


The National Weather Service (NWS) and the National Oceanic and Atmospheric Administration (NOAA) are complaining that the current government shutdown is really endangering US citizens because it has stopped some research.   The organizations posting titled “The government shutdown is putting the US further behind in a weather-forecasting race with Europe” however suggests that the issue is a race with Europe more than saving us from serious problems. 

The shutdown is in its 26th day and it has the potential to make poor predictions about the 2019 tornado and hurricane seasons, alleges NSW and NOAA.  Their predictions were way off for both tornados and hurricanes in 2018.   But one wonders about how much this shutdown has impacted their work.  Being that the 26 days have contained 6 Saturdays and Sundays and more to the point the entire Christmas week as well as the following New Years week.  Probably not much would have been done in that period of time. This sounds like a CYA or a political statement about the stakes in the shutdown.

Speaking of lost time, they tell us that in 2012, the European weather forecast system predicted that Tropical Storm Sandy would make US land fall and our system said it would not.  So this is 6 plus years later and our agencies have not caught up with the European system.  What is some small part of 26 days got to do will the fact the European system has been better than ours for at least 6 years? 

The posting tells us:

“Atmospheric scientists and meteorologists tend to agree about one thing: Europe is better than the US (and arguably the rest of the world) at predicting weather.

The NWS has been falling behind the European Centre for Medium Range- Weather Forecasting for some time.”

 My suggestion is to start using the European system. Looks like that would have saved the US a lot of money by not spending 6 year’s worth of research money and we are still falling behind.    

The complete NWS and NOAA posting can be read by clicking here

 

cbdakota

Green Energy Train To Energy Poverty


The Claim: Europe and Australia are benefiting from their green energy policies. We should follow their example.

The Facts: The Ice Cap blog refutes that claim in a posting titled:“Green Energy Train To Energy  Poverty”.

Joseph D’Aleo shows that green energy is pricing the Europeans out of a number of markets and is wreaking real damage on their poorer citizens.

Two of the many  charts that  D”Aleo uses to make his case are as follows:

 

 

And the following chart equates the amount of installed wind and solar renewable energy with the cost of electricity:

 

Read D’Aleo’s full posting by clicking here:

cbdakota

Cassini’s Grand Tour Of Saturn


National Geographic presents a great review of Cassini’s tour of Saturn ,

the rings and the many moons.

Click on the link below

http://www.nationalgeographic.com/science/2017/09/cassini-saturn-nasa-3d-grand-tour/?utm_source=NatGeocom&utm_medium=Email&utm_content=specialedition_cassini_20170915&utm_campaign=Content&utm_rd=719266555%20#intr

Its fun as well as scientifically spectacular.

cbdakota

 

Global Temperature Anomaly Rose, In August, to +0.41C


It seems that the global temperature as  measured by the UAH satellite is not going down at the rate most expected.  The ENSO meter shows a cooling temperature, finally.  But I doubt that anyone is going to call it an La Nina.         The August global temperature anomaly is +41C.

YEAR MO GLOBE NHEM. SHEM. TROPICS

16 08        +0.43   +0.54    +0.32    +0.49
16 09        +0.45   +0.51    +0.39     +0.37
16 10         +0.42  +0.43    +0.42     +0.47
16 11         +0.46  +0.43     +0.49     +0.38
16 12        +0.26  +0.26      +0.27     +0.24
17 01        +0.32  +0.31      +0.34     +0.10
17 02        +0.38  +0.57     +0.19      +0.07
17 03       +0.22  +0.36     +0.09     +0.05
17 04       +0.27  +0.28      +0.26      +0.21
17 05      +0.44  +0.39       +0.49     +0.41
17 06      +0.21  +0.33       +0.10     +0.39
17 07      +0.29  +0.30      +0.27      +0.51
17 08      +0.41  +0.40      +0.41      +0.46

(Chart and table are from Dr Roy Spencer’s posting

Reviewing the table above , August 2017 is nearly a match with Aug 201. August last year was recorded at the time the EL Nino temperatures were on the rise.

cbdakota