Category Archives: Renewable Energy

UN Forecast Year 2100 World Population At 10.9Billion. Only Nuclear Can Provide Needed Energy

The “UN 2019 Revision of World Population Prospects” report says that by the end of this century the world’s population will be about 10.9 people. What does this mean with respect to the UN goals of having only renewable power—wind and solar –and the elimination of fossil fuels as an energy source? 

The Pew Research Center analyzed the UN report and came up with some eye-opening observations.   China will begin to lose population by the end of this century.  India will have the world’s largest population, surpassing China.   Africa will have 4.3 billion people at the turn of the century, substantially more that the 1.5 billion it has in 2020.  And Africa’s average age will be 35. The World’s median age will be 42.

Look at this chart:

By 2100, Asia and Africa combined will be 9.0 billion of the forecast total world population of 10.9 billion. We can expect that the really undeveloped populations of the world will be demanding a standard of living approaching that of Europe and North America. 

China and India have already launched programs to achieve a very much improved standard of living for their people.  Africa will surely do the same and with a relatively young population they will be aggressive.  That standard of living will only be realized through energy.

It will not come from renewables.  It probably cannot be fully realized by fossil fuels.   It will have to come from nuclear energy.  Ultimately, nuclear will dominate the energy sector.  

For the US, economics are causing some shutdowns of nuclear plants as natural gas generates energy at a lower cost.  In the long run, nukes should be the lowest cost reliable energy.

However, there are several nukes that are being shutdown because a governing body does not like them.  These are bad choices.

Germany seems to have an irrational fear of nukes that were prompted by the Japanese Fukushima nuke plants being flooded by a tsunami.  When was the last time a tsunami hit Germany?

It is my opinion that the greens opposition to nukes is that the nukes have the potential to solve the energy problem. Many leaders of the green movement have publicly announced that their goal is a one-world socialist government based out of the UN. They would prefer an energy limited world where they would be in charge.   Nukes could solve the energy problem, destroying their dream.  

Ok, will these population estimates prove-out?  Will Ebola wipe out millions of Africans?   Will there be a war or wars that slash these estimates?   Could the expectations for lower fertility be wrong and the world population grows even larger?   Of course, I don’t know answers to any of those questions.  But for the moment, I am assuming these estimates are going to be accurate.


New Energy Economy: An Exercise in Magical Thinking Part 7 Moore’s Law Misapplied.

Continuing serialization of Mark Mills’ report New Energy Economy: An Exercise in Magical Thinking.  This is part 7 Moore’s Law Misapplied.  Moore is well known for his prediction  that the number of transistors in a dense integrated circuit would double every two years.  But Mills points out this doesn’t work for renewable energy.


Moore’s Law Misapplied 

Faced with all the realities outlined above regarding green technologies, new energy economy enthusiasts nevertheless believe that true breakthroughs are yet to come and are even inevitable. That’s because, so it is claimed, energy tech will follow the same trajectory as that seen in recent decades with computing and communications. The world will yet see the equivalent of an Amazon or “Apple of clean energy.”70

 This idea is seductive because of the astounding advances in silicon technologies that so few forecasters anticipated decades ago. It is an idea that renders moot any cautions that wind/solar/batteries are too expensive today—such caution is seen as foolish and shortsighted, analogous to asserting, circa 1980, that the average citizen would never be able to afford a computer. Or saying, in 1984 (the year that the world’s first cell phone was released), that a billion people would own a cell phone, when it cost $9,000 (in today’s dollars). It was a two-pound “brick” with a 30-minute talk time.

Today’s smartphones are not only far cheaper; they are far more powerful than a room-size IBM mainframe from 30 years ago. That transformation arose from engineers inexorably shrinking the size and energy appetite of transistors, and consequently increasing their number per chip roughly twofold every two years—the “Moore’s Law” trend, named for Intel cofounder Gordon Moore.

The compound effect of that kind of progress has indeed caused a revolution. Over the past 60 years, Moore’s Law has seen the efficiency of how logic engines use energy improve by over a billionfold.71 But a similar transformation in how energy is produced or stored isn’t just unlikely; it can’t happen with the physics we know today.

In the world of people, cars, planes, and large-scale industrial systems, increasing speed or carrying capacity causes hardware to expand, not shrink. The energy needed to move a ton of people, heat a ton of steel or silicon, or grow a ton of food is determined by properties of nature whose boundaries are set by laws of gravity, inertia, friction, mass, and thermodynamics.

If combustion engines, for example, could achieve the kind of scaling efficiency that computers have since 1971—the year the first widely used integrated circuit was introduced by Intel—a car engine would generate a thousandfold more horsepower and shrink to the size of an ant.72 With such an engine, a car could actually fly, very fast.

If photovoltaics scaled by Moore’s Law, a single postage-stamp-size solar array would power the Empire State Building. If batteries scaled by Moore’s Law, a battery the size of a book, costing three cents, could power an A380 to Asia.

But only in the world of comic books does the physics of propulsion or energy production work like that. In our universe, power scales the other way.

An ant-size engine—which has been built—produces roughly 100,000 times less power than a Prius. An antsize solar PV array (also feasible) produces a thousandfold less energy than an ant’s biological muscles. The energy equivalent of the aviation fuel actually used by an aircraft flying to Asia would take $60 million worth of Tesla-type batteries weighing five times more than that aircraft.73

 The challenge in storing and processing information using the smallest possible amount of energy is distinct from the challenge of producing energy, or of moving or reshaping physical objects. The two domains entail different laws of physics.

The world of logic is rooted in simply knowing and storing the fact of the binary state of a switch—i.e., whether it is on or off. Logic engines don’t produce physical action but are designed to manipulate the idea of the numbers zero and one. Unlike engines that carry people, logic engines can use software to do things such as compress information through clever mathematics and thus reduce energy use. No comparable compression options exist in the world of humans and hardware.

 Of course, wind turbines, solar cells, and batteries will continue to improve significantly in cost and performance; so will drilling rigs and combustion turbines (a subject taken up next). And, of course, Silicon Valley information technology will bring important, even dramatic, efficiency gains in the production and management of energy and physical goods (a prospect also taken up below). But the outcomes won’t be as miraculous as the invention of the integrated circuit, or the discovery of petroleum or nuclear fission


Upcoming is Part 8 Sliding Down the Renewable Asymptote.


New Energy Economy: An Exercise in Magical Thinking—Part 5 The Hidden Costs of a “Green” Grid

Continuing the serialization of Mark Mills’ report titled New Energy Economy: An Exercise In Magic Thinking:


The Hidden Costs of a “Green” Grid      

Subsidies, tax preferences, and mandates can hide realworld costs, but when enough of them accumulate, the effect should be visible in overall system costs. And it is. In Europe, the data show that the higher the share of wind/solar, the higher the average cost of grid electricity (Figure 3).

 Germany and Britain, well down the “new energy” path, have seen average electricity rates rise 60%–110% over the past two decades.37 The same pattern—more wind/ solar and higher electricity bills—is visible in Australia and Canada.38

Since the share of wind power, on a per-capita basis, in the U.S. is still at only a small fraction of that in most of Europe, the cost impacts on American ratepayers are less dramatic and less visible. Nonetheless, average U.S. residential electric costs have risen some 20% over the past 15 years.39 That should not have been the case. Average electric rates should have gone down, not up.

 Here’s why: coal and natural gas together supplied about 70% of electricity over that 15-year period.40 The price of fuel accounts for about 60%–70% of the cost to produce electricity when using hydrocarbons.41 Thus, about half the average cost of America’s electricity depends on coal and gas prices. The price of both those fuels has gone down by over 50% over that 15-year period. Utility costs, specifically, to purchase gas and coal are down some 25% over the past decade alone. In other words, cost savings from the shale-gas revolution have significantly insulated consumers, so far, from even higher rate increases.

The increased use of wind/solar imposes a variety of hidden, physics-based costs that are rarely acknowledged in utility or government accounting. For example, when large quantities of power are rapidly, repeatedly, and unpredictably cycled up and down, the challenge and costs associated with “balancing” a grid (i.e., keeping it from failing) are greatly increased. OECD analysts estimate that at least some of those “invisible” costs imposed on the grid add 20%–50% to the cost of grid kilowatt-hours.42

 Furthermore, flipping the role of the grid’s existing power plants from primary to backup for wind/ solar leads to other real but unallocated costs that emerge from physical realities. Increased cycling of conventional power plants increases wear-and-tear and maintenance costs. It also reduces the utilization of those expensive assets, which means that capital costs are spread out over fewer kWh produced— thereby arithmetically increasing the cost of each of those kilowatt-hours.43

 Then, if the share of episodic power becomes significant, the potential rises for complete system blackouts. That has happened twice after the wind died down unexpectedly (with some customers out for days in some areas) in the state of South Australia, which derives over 40% of its electricity from wind.44

After a total system outage in South Australia in 2018, Tesla, with much media fanfare, installed the world’s single largest lithium battery “farm” on that grid.45 For context, to keep South Australia lit for one half-day of no wind would require 80 such “world’s biggest” Tesla battery farms, and that’s on a grid that serves just 2.5 million people.

Engineers have other ways to achieve reliability; using old-fashioned giant diesel-engine generators as backup (engines essentially the same as those that propel cruise ships or that are used to back up data centers). Without fanfare, because of rising use of wind, U.S. utilities have been installing grid-scale engines at a furious pace. The grid now has over $4 billion in utility-scale, enginedriven generators (enough for about 100 cruise ships), with lots more to come. Most burn natural gas, though a lot of them are oil-fired. Three times as many such big reciprocating engines have been added to America’s grid over the past two decades as over the half-century prior to that.46

All these costs are real and are not allocated to wind or solar generators. But electricity consumers pay them. A way to understand what’s going on: managing grids with hidden costs imposed on nonfavored players would be like levying fees on car drivers for the highway wear-and-tear caused by heavy trucks while simultaneously subsidizing the cost of fueling those trucks.

The issue with wind and solar power comes down to a simple point: their usefulness is impractical on a national scale as a major or primary fuel source for generating electricity. As with any technology, pushing the boundaries of practical utilization is possible but usually not sensible or cost-effective. Helicopters offer an instructive analogy.

The development of a practical helicopter in the 1950s (four decades after its invention) inspired widespread hyperbole about that technology revolutionizing personal transportation. Today, the manufacture and use of helicopters is a multibillion-dollar niche industry providing useful and often-vital services. But one would no more use helicopters for regular Atlantic travel— though doable with elaborate logistics—than employ a nuclear reactor to power a train or photovoltaic systems to power a country.


Only recently did I become aware that  recips are often used as the backup to renewable energy.   Click here to read a little about the recips .

Part 6 will be titled Batteries Cannot Save the Grid or the Planet.


New Energy Economy: An Exercise in Magical Thinking–Part 1— Introduction


This posting will provide the Introduction to Mark Mills report titled “New Energy Economy: An Exercise in Magical Thinking”.

Mills is a scientist.  Most of the reports that say it is possible to eliminate fossil fuel’s use and replace them with wind and solar, seem to be written by economists.  I have nothing against economists as my daughter and son are economists.  It is just that I fear that the authors accept the alarmists visions then hang some economic words on that skeleton.  Let’s look at Mills’ VC:

Mark P. Mills is a senior fellow at the Manhattan Institute and a faculty fellow at Northwestern University’s McCormick School of Engineering and Applied Science, where he co-directs an Institute on Manufacturing Science and Innovation. He is also a strategic partner with Cottonwood Venture Partners (an energy-tech venture fund). Previously, Mills cofounded Digital Power Capital, a boutique venture fund, and was chairman and CTO of ICx Technologies, helping take it public in 2007. Mills is a regular contributor to and is author of Work in the Age of Robots (2018). He is also coauthor of The Bottomless Well: The Twilight of Fuel, the Virtue of Waste, and Why We Will Never Run Out of Energy (2005). His articles have been published in the Wall Street Journal, USA Today, and Real Clear. Mills has appeared as a guest on CNN, Fox, NBC, PBS, and The Daily Show with Jon Stewart. In 2016, Mills was named “Energy Writer of the Year” by the American Energy Society.

Earlier, Mills was a technology advisor for Bank of America Securities and coauthor of the Huber-Mills Digital Power Report, a tech investment newsletter. He has testified before Congress and briefed numerous state public-service commissions and legislators. Mills served in the White House Science Office under President Reagan and subsequently provided science and technology policy counsel to numerous private-sector firms, the Department of Energy, and U.S. research laboratories.

Early in his career, Mills was an experimental physicist and development engineer at Bell Northern Research (Canada’s Bell Labs) and at the RCA David Sarnoff Research Center on microprocessors, fiber optics, missile guidance, earning several patents for his work. He holds a degree in physics from Queen’s University in Ontario, Canada.



A growing chorus of voices is exhorting the public, as well as government policymakers, to embrace the necessity— indeed, the inevitability—of society’s transition to a “new energy economy.” Advocates claim that rapid technological changes are becoming so disruptive and renewable energy is becoming so cheap and so fast that there is no economic risk in accelerating the move to—or even mandating—a post-hydrocarbon world that no longer needs to use much, if any, oil, natural gas,  or coal. Central to that worldview is the proposition that the energy sector is undergoing the same kind of technology disruptions that Silicon Valley tech has brought to so many other markets. Indeed, “old economy” energy companies are a poor choice for investors, according to proponents of the new energy economy, because the assets of hydrocarbon companies will soon become worthless, or “stranded.”1 Betting on hydrocarbon companies today is like betting on Sears instead of Amazon a decade ago. “Mission Possible,” a 2018 report by an international Energy Transitions Commission, crystallized this growing body of opinion on both sides of the Atlantic.2 To “decarbonize” energy use, the report calls for the world to engage in three “complementary” actions: aggressively deploy renewables or so-called clean tech, improve energy efficiency, and limit energy demand. This prescription should sound familiar, as it is identical to a nearly universal energy-policy consensus that coalesced following the 1973–74 Arab oil embargo that shocked the world. But while the past half-century’s energy policies were animated by fears of resource depletion, the fear now is that burning the world’s abundant hydrocarbons releases dangerous amounts of carbon dioxide into the atmosphere. To be sure, history shows that grand energy transitions are possible. The key question today is whether the world is on the cusp of another. The short answer is no. There are two core flaws with the thesis that the world can soon abandon hydrocarbons. The first: physics realities do not allow energy domains to undergo the kind of revolutionary change experienced on the digital frontiers. The second: no fundamentally new energy technology has been discovered or invented in nearly a century—certainly, nothing analogous to the invention of the transistor or the Internet. Before these flaws are explained, it is best to understand the contours of today’s hydrocarbon-based energy economy and why replacing it would be a monumental, if not an impossible, undertaking.


The next installment of Mills’ report will be “Moonshot Policies and the Challenge of Scale”. That will be followed by “The Physics—Driven Cost Realities of Wind and Solar.

The numbers that appear at the end of some sentences  are references.  I will publish all those at the end of serialized report.


Can Wind and Solar Sources Replace Fossil Fuels by 2050?

Can wind and solar sources replace fossil fuels by 2050?   Beginning with today’s positing, I will let Mark Mills answer that question.  I plan a series of posting on this topic beginning with  a summary of Mills’ views. The summary is a condensation of his report titled “THE “NEW ENERGY ECONOMY”: AN EXERCISE IN MAGICAL THINKING “.  I plan to serialized the report as a follow-up for those who want to dig deeper.  I bet you will find the serialized posting to be enlightening and what little math is used is  limited to multiplication, addition and subtraction.



Want an Energy Revolution?

by Mark Mills

Throughout history, some 60 percent to 90 percent of every nation’s economy has been consumed by food and fuel costs. Hydrocarbons changed the way that humans organize their productive capacity. The coal age, followed by the oil age, and now by the ascendant age of natural gas, has (at least for developed nations) driven the share of GDP devoted to acquiring food and fuel down to around 10 percent. That transformation constitutes one of the great pivots for civilization.

Many analysts claim that yet another such consequential energy revolution is upon us: “clean energy,” in the form of wind turbines, solar arrays, and batteries, they say, is about to become incredibly cheap, making it possible to create a “new energy economy.” Polls show that nearly 80 percent of voters believe that America is “capable of creating a new electricity system.”

We can thank Silicon Valley for popularizing “exponential change” and “disruptive innovations.” The computing and communications revolutions that have transformed many industries have also shaped both expectations and rhetoric about how other technologies evolve. We hear claims, as one Stanford professor put it, that clean tech will follow digital technology in a “10x exponential process which will wipe fossil fuels off the market in about a decade.” Or, as the International Monetary Fund recently summarized, “smartphone substitution seemed no more imminent in the early 2000s than large-scale energy substitution seems today.” The mavens at Singularity University tell us that with clean tech, we’re “on the verge of a new, radically different point in history.” Solar, wind, and batteries are “on a path to disrupt” the old order dominated by fossil fuels.

Never mind that wind and solar—the focus of all “new energy economy” aspirations, including its latest incarnation in the Green New Deal—supply just 2 percent of global energy, despite hundreds of billions of dollars in subsidies. After all, it wasn’t long ago that only 2 percent of the world owned a pocket-sized computer. “New energy economy” visionaries believe that a digital-like energy disruption is not just possible, but imminent. One professor predicts that we will see an “Apple of clean energy.”

As it happens, energy does have something to do with the fact that today’s smartphones are much cheaper and more powerful than a room-size IBM mainframe from the 1980s. The essential feature of that transformation is that engineers collapsed the energy appetite and size of transistors, consequently increasing their number per chip roughly twofold every two years. In other words, computing power per energy unit doubled five times per decade. The compound effect of that kind of progress—formally dubbed Moore’s Law, after Intel cofounder Gordon Moore—has indeed caused a “disruptive” revolution. A single iPhone at 1980 energy efficiency would require as much power as a Manhattan office building. Similarly, a single data center at 1980 efficiency would require as much power as the entire U.S. grid. But because of efficiency gains, the world today has billions of smartphones and thousands of datacenters.

A similar transformation in how energy is produced or stored isn’t just unlikely: it’s impossible. Drawing an analogy between information production and energy production is a fundamental category error. They entail different laws of physics. Logic engines don’t produce physical action or energy; they manipulate the idea of the numbers one and zero. Silicon logic is rooted in simply knowing and storing the position of a binary switch—on or off.

But the energy needed to move a ton of people, heat a ton of steel or silicon, or grow a ton of food is determined by properties of nature, whose boundaries are set by laws of gravity, inertia, friction, and thermodynamics—not clever software or marketing. Indeed, the differences between the physical and virtual are best illustrated by the fact that, using mathematical magic, one can do things like “compress” information to reduce the energy needed to transport that information. But in the world of humans and objects with mass, comparable “compression” options exist only in Star Trek.

If, in some alternative universe, the performance of silicon solar cells followed Moore’s Law, a single postage-stamp-size solar cell could fuel the Empire State Building. Similarly, a single battery the size of a book would cost 3 cents and power a jumbo jet to Asia. Such things happen only in comic books because, ultimately, physics, not policies, dictates the possibilities—and thus the economics—for energy technologies, regardless of subsidies and mandates.

Spending $1 million on wind or solar hardware in order to capture nature’s diffuse wind and sunlight will yield about 50 million kilowatt-hours of electricity over a 30-year period. Meantime, the same money spent on a shale well yields enough natural gas over 30 years to produce 300 million kilowatt-hours. That difference is anchored in the far higher, physics-based energy density of hydrocarbons. Subsidies can’t change that fact.

And then batteries are needed, and widely promoted, as the way to convert wind or solar into useable on-demand power. While the physical chemistry of batteries is indeed nearly magical in storing tiny quantities of energy, it doesn’t scale up efficiently. When it comes to storing energy at country scales, or for cargo ships, cars and aircraft, engineers start with a simple fact: the maximum potential energy contained in hydrocarbon molecules is about 1,500 percent greater, pound for pound, than the maximum theoretical lithium chemistries. That’s why the cost to store a unit of energy in a battery is 200 times more than storing the same amount of energy as natural gas. And why, today, it would take $60 million worth of Tesla batteries—weighing five times as much as the entire aircraft—to hold the same energy as is held in a transatlantic plane’s onboard fuel tanks.

For a practical example of the physics-anchored gap between aspiration and reality, consider Florida Power & Light’s (FPL) recently announced plan to replace an old gas-fired power station with the world’s biggest battery project—promised to be four times bigger than the current number one, a system Tesla installed, to much fanfare, last year in South Australia. The monster FPL battery “farm” will be able to store just two minutes of Florida’s electricity needs. That’s not going to change the world, or even Florida.

Moreover, it takes the energy equivalent of about 100 barrels of oil to manufacture a battery that can store the energy equal to one oil barrel. That means that batteries fabricated in China (most already are) by its predominantly coal-powered grid result in more carbon-dioxide emissions than those batteries, coupled with wind/solar, can eliminate. It’s true that wind turbines, solar cells, and batteries will get better, but so, too, will drilling rigs and combustion engines. The idea that “old” hydrocarbon technologies are about to be displaced wholesale by a digital-like, clean-tech energy revolution is a fantasy.

If we want a disruption to the energy status quo, we will need new, foundational discoveries in the sciences. As Bill Gates has put it, the challenge calls for scientific “miracles.” Any hoped-for technological breakthroughs won’t emerge from subsidizing yesterday’s technologies, including wind and solar. The Internet didn’t emerge from subsidizing the dial-up phone, or the transistor from subsidizing vacuum tubes, or the automobile from subsidizing railroads. If policymakers were serious about the pursuit of the next energy revolution, they’d be talking a lot more about reinvigorating support for basic science.

It bears noting that over the past decade, U.S. production of oil and natural gas has increased by 2,000 percent more than the combined growth of (subsidized) wind and solar. Shale technology has utterly transformed the global energy landscape. After a half-century of hand-wringing about import dependencies, America is now a major exporter. Now that’s a revolution.

Want an Energy Revolution?



Can Ocean Going Ships Be Battery Equipped?

Wind and Solar energy assumptions by the warmers greatly exceeds these sources actual capability.  Let’s look at how renewable energy plays out as a possible replacement of diesel fuel for container ships.  This is discussed in a 27 Feburary 19  IEEE Spectrum  posting by Vaclav Smil  titled “Electric Container Ships Are Stuck on the Horizon”.   It opens up with the following:

Just about everything you wear or use around the house once sat in steel boxes on ships whose diesel engines propel them from Asia, emitting particulates and carbon dioxide. Surely, you would think, we can do better.

Why not get electric container ships? Actually, the first one should begin to operate this year: the Yara Birkeland, built by Marin Teknikk, in Norway, is not only the world’s first electric-powered, zero-emissions container ship but also the first autonomous commercial vessel.

When warmers quote emissions from battery powered engines, they always tell us that such engine is “Zero-emissions”.  Most batteries charges are provided by fossil fuel power plants.  So the real emissions are never zero but rather those emissions from the fossil fuel plant that created the energy to charge the batteries.  And more from the posting:

Containers come in different sizes, but most are the standard twenty-foot equivalent units (TEU)—rectangular prisms 6.1 meters (20 feet) long and 2.4 meters wide..  Maersk’s Triple-E class ships load 18,000 TEUs.   At the “super slow steaming,” fuel-saving speed of 16 knots, these ships can make the journey from Hong Kong to Hamburg in 31 days.

Now look at the Yara Birkeland. It will carry just 120 TEU, its service speed will be 6 knots, its longest intended operation will be 30 nautical miles—between Herøya and Larvik, in Norway—and its batteries will deliver 7 to 9 megawatt hours. Today’s state-of-the-art diesel container vessels thus carry 150 times as many boxes over distances 400 times as long at speeds three to four times as fast as the pioneering electric ship can handle.

 The author makes a comparison with a hypothetical battery powered container ship and an actual diesel-powered container ship:

Load the ship with today’s best commercial Li-ion batteries (300 Wh/kg) and still it would have to carry about 100,000 metric tons of them to go nonstop from Asia to Europe in 31 days. Those batteries alone would take up about 40 percent of maximum cargo capacity, an economically ruinous proposition, never mind the difficulties involved in charging and operating the ship. And even if we push batteries to an energy density of 500 Wh/kg sooner than might be expected, an 18,000-TEU vessel would still need nearly 60,000 metric tons of them for a long intercontinental voyage at a relatively slow speed.

The conclusion is obvious. To have an electric ship whose batteries and motors weighed no more than the fuel (about 5,000 metric tons) and the diesel engine (about 2,000 metric tons) in today’s large container vessels, we would need batteries with an energy density more than 10 times as high as today’s best Li-ion units. 

That’s a tall order indeed: In the past 70 years the energy density of the best commercial batteries hasn’t even quadrupled.

I have read accounts of “fuel anxiety” that electric car drivers get as they wonder if they can make the next recharging station before the batteries are totally discharged.  Can you imagine the anxiety the ship’s captain might have knowing there are no recharging stations in mid ocean.

If the container ships were equipped with a nuclear reactor as in our navy’s submarines, we could probably match the performance of the diesel container ships and actually have a no carbon emissions ship.



Paris Agreement and Paris Agreement Hollow Echos

Virginia goes Don Quixote 

State will defy Trump, double down on renewables and CO2 reductions – and hurt poor families.  By Paul Driessen

Democrat Ralph Northam had barely won the Virginia governor’s race when his party announced it would impose a price on greenhouse gases emissions, require a 3% per year reduction in GHG emissions, and develop a cap-and-trade scheme requiring polluters to buy credits for emitting carbon dioxide.

Meanwhile, liberal governors from California, Oregon and Washington showed up at the COP23 climate confab in Bonn, Germany to pledge that their states will remain obligated to the Paris climate treaty, and push ahead with even more stringent emission, electric vehicle, wind, solar and other programs.  Leaving aside the unconstitutional character of states signing onto an international agreement that has been repudiated by President Trump (and the absurdity of trying to blame every slight temperature change and extreme weather event on fossil fuels), there are major practical problems with all of this.

To read the complete posting click here


Germany-to-miss-co2-reduction-targets  By P Gosselin on 6. December 2017

The latest forecast shows snow and cold moving across much Germany this weekend, again. Despite Germany ‘s ruddy CO2 emissions, winter keeps coming.

German public broadcasting, here for example, reports today that despite all the green, climate-preaching, Germany will miss its 2020 CO2 reductions by a mile. More embarrassingly, the country has not reduced its CO2 equivalent emissions in 9 years when 2017 is counted in the statistics.

To read the complete posting click here


From the New York Time: “What Happened (and Didn’t) at the Bonn Climate Talks

The New York Times puts a happy face on the Bonn meeting on the Paris agreement,  it is clear that virtually none of the parties are meeting their commitments:

Click here to read the complete posting.


Even Without Paris Agreement, U.S. Leads World in Declining Carbon Dioxide Emissions: “While the decision to pull out of the deal had diplomatic consequences, the U.S. has dramatically lowered its carbon emissions in the last year, largely without government mandates. These emissions reductions came as the result of price drops for both natural gas and solar panels. How significant this reduction is, however, demonstrates the challenges of gauging emissions on a global scale.

Click here to read the complete posting  

Green Energy Train To Energy Poverty

The Claim: Europe and Australia are benefiting from their green energy policies. We should follow their example.

The Facts: The Ice Cap blog refutes that claim in a posting titled:“Green Energy Train To Energy  Poverty”.

Joseph D’Aleo shows that green energy is pricing the Europeans out of a number of markets and is wreaking real damage on their poorer citizens.

Two of the many  charts that  D”Aleo uses to make his case are as follows:



And the following chart equates the amount of installed wind and solar renewable energy with the cost of electricity:


Read D’Aleo’s full posting by clicking here:


The 5 Most Common Plastics And Their Everyday Uses

I think the forecasts that tell us that wind and solar will put fossil fuels out of business by 2050 are pipedreams. Plastics are typically made from oil and natural gas liquids.  Although there have been attempts to use biomass as substitutes for fossil fuels in the making of plastics, they show little promise. So, fossil fuels making plastics will be around for a long time.

To give the reader an overview at how pervasive plastic are, here is a posting by

The 5 Most Common Plastics & Their Everyday Uses

Despite being all but unheard of until the 1920’s, plastic materials have effectively permeated every aspect of modern day life, from the microchips in your computer to the bags you carry your shopping in. The reason why it seems like plastic can be used just about everywhere is that it is not actually just one material, but a group of materials. There are so many different types of plastic material, and a lot of them, like polyethylene , PVC, acrylic, etc., have incredibly useful and versatile properties.

You would be amazed by just how many types of plastic there are, and how some, like Polyether Ether Ketone (PEEK), are quickly taking the place of metals in a wide range of applications. Having said that, plastics with these characteristics are still being developed, and though they’re useful they are not used widely just yet due to their generally higher costs. There are a great many plastics however that don’t have this problem, and though they may not seem quite as impressive now at one time they were practically revolutionary.

The following are the 5 most common plastics along with some of their everyday uses. Just think how much different life was and would be without them, and what inferior materials we would have to use in their place…

1: Polyethylene Terephthalate (PET)

One of the plastics you are most likely to come into physical contact with on a daily basis, depending on how it is made PET can be completely rigid or flexible, and because of its molecular construction it is impact, chemical and weather resistant and a terrific water and gas barrier.

Common uses of PET: Soft drink, water, cooking oil bottles, packaging trays, frozen ready-meal trays, First-aid blankets, polar fleece.

2: High Density Polyethylene (HDPE)

Incredibly strong considering its density, HDPE is a solid material that can tolerate high temperatures and strong chemicals. One of the reasons that HDPE is used so regularly is that it can be recycled in many different ways and therefore converted into many different things.

Common uses of HDPE: Cleaning solution and soap containers, Food and drink storage, shopping bags, freezer bags, pipes, insulation, bottle caps, vehicle fuel tanks, protective helmets, faux-wood planks, recycled wood-plastic composites.

3: Polyvinyl Chloride (PVC)

Cost effective to produce and highly resilient to chemical and biological damage, PVC is easy to work with and mould into shapes; making it an extremely practical material. In terms of properties, PVC is one of the most versatile. It can be used to create rigid, lightweight sheets, like Foamex, but it can also be used to make faux-leather materials like leatherette and pleather.

Common uses of PVC: Signage, furniture, clothing, medical containers, tubing, water and sewage pipes, flooring, cladding, vinyl records, cables, cleaning solution containers, water bottles.

4: Low Density Polyethylene (LDPE)

At general living temperatures LDPE is a highly non-reactive material, which explains why it has become one of the most common plastics in use at the moment. It can withstand temperatures approaching 100°C, and though it is not as strong as HDPE (its high density counterpart), it is certainly more resilient.

Common uses of LDPE: Trays, containers, work surfaces, machine parts, lids, ‘6-ring’ drink holders, drink cartons, protective shells, computer hardware casings, playground fixtures (slides and the like), bin-bags, laundry bags.

5: Polypropylene (PP)

Strong and flexible, polypropylene is a very hard wearing plastic that, when melted, is one of the most effective materials for injection moulding. Having said that, it has quite a high tolerance to high temperatures, relative to other plastics, and is considered to be a food safe material.

Common uses of Polypropylene: Clothing, surgery tools and supplies, hobbyist model, bottle caps, food containers, straws, crisp bags, kettles, lunch boxes, packing tape.

Next we will look a little deeper into fossil fuel use in plastics.


Fire Ice–Biggest Source Of Natural Gas On The Planet

The US Geological Survey (USGS) cited estimates of the methane (CH4) trapped in global methane hydrate (aka methane clathrate, Fire Ice, etc.) deposits are 3600 times more than the 2016 US consumption of natural gas. The 2016 US   consumption of natural gas (natural gas is mostly methane), according to Donn Dears, was 27.5×10^12 cubic feet.

The estimate of trapped gas in the deposits ranges from 10^17 to 5×10^18 cubic feet*.  Those are estimates and further those estimates probably include some amount of methane hydrate that will never be economical to produce. Even so, oil reserves that were supposed to have peaked many years ago, keep growing because of new technology. eg. Fracking.  So, who knows?

*(For the non-engineer or scientist that might not know how much that is, it can be restated as 1 followed by 17 zeros to 5 followed by 18 zeros cubic feet of natural gas.)

Where are the hydrate deposits found?

Methane hydrate deposits are found (or predicted) to be associated with continental margins and onshore permafrost areas. The chart below global areas where deposits are to be found.

First, let’s discuss where the methane originates. Methane is largely produced by micro-organisms that act on the plankton that has accumulated deep in the ocean floor sediments.  In the upper layers of the sediment where the temperature and pressure are suitable, the rising CH4 bubbles are captured in very cold water and the hydrate is formed. While methane produced biogenically is considered the most widespread source, there is another source.  Thermogenic methane is produced where high pressures and high temperatures cook organic matter.

Continue reading